Code: 20CE4601D

III B.Tech - II Semester – Regular / Supplementary Examinations APRIL 2024

SANITARY ENGINEERING (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks	
		UNIT-I			IVIAIKS	
1	a)	Explain the rational method of determining	L3	CO1	7 M	
		the quantity of storm water. Discuss the				
		methods of determining various parameters				
		used in the rational formula.				
	b)	A 400 mm diameter sewer is running at	L4	CO1	7 M	
		40% of full depth on a grade ensuring a				
		degree of self-cleansing equivalent to that				
		obtained at full depth at a velocity of 0.95				
		m/sec. Given data: Manning's rugosity				
		coefficient = 0.014 and variation of n with				
		depth may be neglected. Determine the				
		required slope along with the associated				
		velocity and rate of discharge at this depth.				
OR						

2	a)	Give the expression for the discharge in a	L4	CO1	7 M		
	<i>a)</i>	circular sewer running with a partial flow of	LT		/ IVI		
		sewage in terms of central angle and					
	1 \	discharge during full flow.	T 0	001	7.14		
	b)	Describe the sewer appurtenances in detail.	L3	CO1	7 M		
UNIT-II							
3	a)	A 100 mL of domestic wastewater (20°C)	L3	CO2	7 M		
		having DO of 6.9 mg/L is diluted by adding					
		700 mL of freshwater (20°C). The final DO					
		after 5 days is found to be 5.4 mg/L.					
		Assume K _D at 15°C as 0.079/day. Calculate					
		BOD ₅ and Ultimate BOD at 20°C.					
	b)	Derive the BOD rate equation.	L3	CO2	7 M		
		OR					
4	a)	Write a short note on carbon & sulphur	L3	CO2	7 M		
	ŕ	cycles of decomposition.					
	b)	Explain various physio-chemical	L3	CO2	7 M		
		characteristics of sewage and their					
		environmental significance.					
		UNIT-III					
5	a)	Discuss the design criteria for grit chamber.	L3	CO3	7 M		
	b)	Differentiate between standard rate and high	L3	CO3	7 M		
		rate trickling filters.					
	OR						
6	a)	Explain the working of conventional	L3	CO3	7 M		
	·	activated sludge process (ASP) with flow					
		diagram.					
L		_					

	b)	Write a short note on (i) Sludge bulking and	L3	CO3	7 M			
		(ii) sludge volume index.						
UNIT-IV								
7	a)	Explain the term "sewage sickness" and also	L3	CO4	7 M			
		explain the remedies that to be required for						
		the reduction of sewage sickness.						
	b)	Design a septic tank for a population of 200	L4	CO4	7 M			
		in a housing colony with daily sewage flow						
		of 135 litres per capita per day. Assume the						
		data if any required.						
		OR						
8	a)	Discuss briefly about the disposal of sewage	L3	CO4	7 M			
		in river water.						
	b)	Write a short note on oxygen sag curve.	L3	CO4	7 M			
		UNIT-V						
9	a)	Explain in detail about sludge conditioning	L3	CO5	7 M			
		and dewatering with a neat sketch.						
	b)	Explain in detail about different types of	L3	CO5	7 M			
		plumbing systems.						
OR								
10	a)	Explain clearly different methods of sludge	L3	CO5	7 M			
		disposal.						
	b)	List out various sanitary fitting and explain	L3	CO5	7 M			
		their functions in detail.						